

Androgenetische Alopezie Postfinasterid-Syndrom - Fakt oder Fiktion

Günter Stalla und Kathrin Popp

03.07.2024 München

Interessenkonflikte

Keine zu diesem Thema

Anamnese:

- Apotheker in Rente, stellt sich vor zur Abklärung eines für ihn sicheres Postfinasterid-Syndroms
- Beschwerden: Hypersomnie seit 3 Jahren, Gewichtszunahme seit 20 Jahren, "wellenhafte Hungerattacken", Verzögertes Sättigungsgefühl, Konzentrationsstörungen, Sehstörungen, Libidoverlust, Stimmungsschwankungen
- Langjähriger exzessive Therapie mit Finasterid 1-5 mg/d über 18 Jahre (1998-09/2016) bei androgenetische Alopezie
- Vermutet bei sich ein Kleine-Levin Syndrom (schubweise remittierende Episoden von Hypersomnie) und ein Morbus Refsum (seltene genetische Erkrankung mit peripherer Neuropathie)
- Unter Cathin (Amphetamin) Gewichtsreduktion um 17 kg (in 3 Monaten)
- Vom Hausarzt 1x grenzwertig niedriges Testosteron gemessen: Substitution mit Tostran, Schädel MRT Sella oB
- Vor kurzem multiple internistische Vordiagnostik erfolgt: u.a. Pulmologie, Kardiologie, Neurologie
- <u>Vorerkrankungen:</u> Adipositas Grad III, Schlafapnoe-Syndrom mit CPAP-Therapie, Hypertonie, Diabetes mellitus Typ 2, Polyneuropathie, Autoimmunthyreoiditis, Eisenmangel, Vitamin D-Mangel, Vitamin B12-Mangel, Schwankschwindel, Varikosis, Z.n. Hüft-TEP bds., Gynäkomastie, multiple Nahrungsmittelunverträglichkeiten

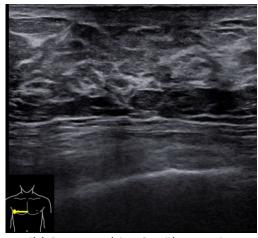
Dauermedikation:

•	Thybon 20 µg	1-0-0
•	L-Thyroxin 112 μg	1-0-0
•	Tostran Gel 2%	2 Hub/d
•	DHEA 25 mg	1-0-1
•	Exenatid 2 mg s.c.	1/Wo
•	Metformin 500 mg	1-0-1
•	Cathin 40 mg/g	12 gtt
•	Pantoprazol 40 mg	1-0-0
•	Moxonidin 0,2 mg	1-0-0
•	Urapidil 90 mg	1-0-0

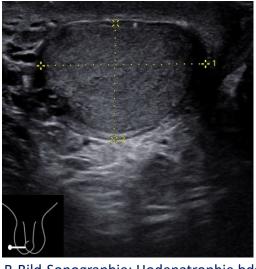
 Lercanidipin 20 mg 	1-0-0
Xipamid 10 mg	1-0-0
 Thioctacid 600 mg 	1-1-1
 Vitamin D3 1000 IE 	1-0-0
 Vitamin B1 300 mg 	1-0-0
 Vitamin B12 1000 μg 	1-0-0
 Silymarin (Mariendistel) 167mg 	1-0-0

Körperliche Untersuchung:

- Körpergröße 166 cm, Körpergewicht 118 kg, BMI 42,8 kg/m², Blutdruck 131/80 mmHg, Herzfrequenz 79/min, Taillenumfang 135 cm
- Cor: Herztöne rein ohne vitientypische Geräusche; Pulmo: VAG bds, keine NG; Abdomen: rege DG über allen Quadranten, kein DS


Laboranalytik 09/2017:

 Testosteron 	10,6 nmol/l	(9,9-27,8 nmol/l) (Substitutionspause seit 2 Wochen)
 Prolaktin 	8,0 ng/ml	(4,0-15,2 ng/ml)
• LH	2,8 mU/ml	(1,7-8,6 mU/ml)
• FSH	2,8 mU/ml	(1,5-12,4 mU/ml)
 Cortisol 	81 µg/l	(60-180 μg/l)
• TSH	0,2 μlU/ml	(0,27-4,2 μlU/ml)
• fT3	0,45 ng/dl	(0,2-0,44 ng/dl)
• fT4	1,9 ng/dl	(0,93-1,7 ng/dl)
• CRP	7,6 mg/l	(0-5 mg/l)
 Leukozyten 	7,5 G/I	(4,3-10,0 G/I)
 Hämoglobin 	16,7 g/dl	(14-18 g/dl)
• HbA1c	6,0 %	(4,8-5,9 %)



B-Bild Sonographie:

- Schilddrüsenatrophie mit 4,5 ml ohne Hinweis für Thyreoiditis
- Gynäkomastie
- ➤ Hodenatrophie bds., Vol. re 8 ml, li 7,5 ml

B-Bild-Sonographie: Gynäkomastie re

B-Bild-Sonographie: Hodenatrophie bds.

Empfehlungen:

- Ernährungsberatung, Lebensstilmodifikation mit regel. körperl. Aktivität
- Medikamentöse Therapieanpassung: Prothyrid 100/10 μg 1-0-0 anstelle von L-Thyroxin und Thybon (im Verlauf nur T4), DHEA und Cathin absetzen
- Ambulante psychiatrische Vorstellung
- Nach RS mit Schlafmedizin ggf. Einsatz von Pitolisant (Histamin-Rezeptor-Ligand für Narkolepsie, OSA)

Herr B.K., 61 J., Follow-Up 10/2017

Psychiatrische Evaluation:

- Habe 17 Jahre in fensterlosem Büro gearbeitet und in 8 m² großem Zimmer im Büro gewohnt
- Workaholic, vermehrtes Schlafbedürfnis bis 12 Std., vermehrte Tagesmüdigkeit
- Alleinstehend, wenig soziale Kontakte
- Geringer Antrieb, Stimmung seit kurzem gebessert
- Psychopathologischer Befund: Pat. war wach, allseits orientiert. Es bestanden keine Störungen von Gedächtnis und Aufmerksamkeit. Denk- oder Ichstörungen sowie Sinnestäuschungen lagen nicht vor. Affekt gemindert, Psychomotorik und Antrieb war er unauffällig. Belastet durch Angst an seltener, schwerer Erkrankung zu leiden. Er war nicht suizidal.
- <u>Beurteilung:</u> Geringgradige <u>depressive Episode</u>, aktuell ohne medikamentösen Handlungsbedarf, Hinweis auf hypochronische Störung

Herr B.K., 61 J., Follow-Up 01/2018

Anamnese:

- Weiterhin reduzierte Libido und Tagesmüdigkeit mit Hypersomnie
- Gewichtabnahme auf 107 kg (-11 kg, BMI 38 kg/m²) weiterhin unter Cathin (Amphetamin)
- Blutdruck gut eingestellt, RR 130/80 mmHg, Herzfrequenz 75/min
- Stimmung sei stabil

Dauermedikation:

	daoinioantatio	
•	Prothyrid 100/10 µg	1-0-0
•	Testogel	1 Hub/d
•	Trulicity 1,5 mg s.c.	1/Wo
•	Metformin 1000 mg	1-0-1
•	Cathin 40 mg/g 12 gtt	1-0-0

 Pantoprazol 40 mg 	1-0-0
 Moxonidin 0,2 mg 	1-0-0
 Urapidil 90 mg 	1-0-0
 Lercanidipin 20 mg 	1-0-0
 Xipamid 10 mg 	1-0-0

Herr B.K., 61 J., Follow-Up 01/2018

Laboranalytik 01/2018:

Testosteron

Prolaktin

LH

FSH

Cortisol

TSH

• fT3

• fT4

CRP

Leukozyten

Hämoglobin

HbA1c

12,6 nmol/l

7,6 ng/ml

3,5 mU/ml

2,9 mU/ml

81 µg/l

0,26 μIU/ml

0,40 ng/dl

1,8 ng/dl

6,5 mg/l

8,4 G/I

16,2 g/dl

5,8 %

(9,9-27,8 nmol/l)

(4,0-15,2 ng/ml)

(1,7-8,6 mU/mI)

(1,5-12,4 mU/mI)

 $(60-180 \mu g/I)$

 $(0,27-4,2 \mu IU/mI)$

(0,2-0,44 ng/dl)

(0,93-1,7 ng/dl)

(0-5 mg/I)

(4,3-10,0 G/I)

(14-18 g/dl)

(4,8-5,9 %)

Empfehlungen:

- Testosterontherapie pausieren
- Prothyrid halbieren, Cathin absetzen

Herr B.K., 61 J., Follow-Up 10/2018

Anamnese:

- · Gewichtabnahme um 4 kg
- Cathin und Testogel entgegen ärztlichem Rat fortgesetzt, durch HA rezeptiert
- Tagesmüdigkeit unverändert, CPAP Therapie fortgesetzt, Trinkmenge ca. 1l/d
- Größe: 166,4 cm, Gewicht: 103 kg, BMI: 37,2 kg/m², Blutdruck 129/85 mmHg, Herzfrequenz 85/min

Dauermedikation:

Prothyrid 100/10 μg
 ½-0-0

• Testogel 1 Hub/d

• Trulicity 1,5 mg s.c. 1x/Woche

Metformin 1000 mg 1-0-1

Cathin 40 mg/g 12 gtt 1-0-0

Dafiro 10/320/25 mg (Amlodipin, Valsartan, HCT) 1-0-0

 Multiple Nahrungsergänzungsmittel (Kurkuma, Mariendistel, Vitamin B1/B12/Calcium)

Procedere:

- Weiterhin Empfehlung zur Therapiepause Cathin und Testogel
- · Reduktion Nahrungsergänzungsmittel

Keine erneute ambulante Vorstellung erfolgt

Finasterid

- Kompetitive Hemmung der 5α-Reduktase Typ 2
- Reduziert Dihydrotestosteron um 60 %
- Keine Affinität zum Androgenrezeptor
- Indikation: Therapie der androgenetischen Alopezie (AGA) des Mannes und der benignen Prostatahyperplasie (BPH)
- Dosierung: 1 mg/d bei AGA, 5 mg/d bei BPH bei Männern >18 LJ
- UAW: Sexuelle Funktionsstörung (Libidoverlust, Erektile Funktionsstörung, Ejakulationsstörungen), reduziert Spermienanzahl, Gynäkomastie, Teratogenität, falsch niedriges PSA, höheres Risiko für Depression/Angststörung, sexuelle Funktionsstörung persistiert in seltenen Fällen nach Absetzen des Präparats
- National Institutes of Health (NIH der FDA) eingerichteten Internetplattform, die sexuelle Dysfunktionen infolge einer Finasteridbehandlung registriert: Ca. 5000 Meldungen im Zeitraum von 1998 und 2013, Schwerwiegende persistierende Störungen bei 11,8 % beschrieben

Testosteron

OH

OH

4,5-Dihydrotestosteron

CH 3

CH

Price VH, N Engl J Med. 1999;341(13):964 Kuhl H, Wiegratz I, Gynäkologische Endokrinologie 2017, 15:153–163

UAW Finasterid

ARCH DERMATOL/VOL 146 (NO. 10), OCT 2010

Efficacy and Safety of Finasteride Therapy for Androgenetic Alopecia Sexuelle

A Systematic Review

José Manuel Mella, MD; Maria Clara Perret, MD; Matias Manzotti, MD; Hugo Norberto Catalano, MD, PhD; Gordon Guyatt, MD, PhD

- Systematischer Review
- Finasteril 1 mg oder 5 mg bei androgenetischer Alopezie
- n= 3570 in 9 Studien

Erhöhtes Risiko für

Sexuelle Funktionsstörungen: RR 1,39

Erectile Dysfunktion: RR 2,2

Libidoverlust: RR 1,08

Ejakulationsstörungen: RR 1,75

Sexuelle Funktionsstörung:

Drake et al (M), ¹¹ 1999 FMPHLSG (M), ²⁷ 2002	0 37	37 779	3 23	67 774	1.3 44.3	0.26 (0.01-4.82) 1.60 (0.96-2.66)	-
Kawashima et al (Japan), ²⁹ 2004		139	3	138	5.3	1.32 (0.30-5.81)	
Leavitt et al (US),30 2005	2	40	0	39	1.3	4.88 (0.24-98.47)	
Leyden et al (US), ³¹ 1999	3	166	2	160	3.7	1.45 (0.24-8.54)	
Olsen et al (US), ³² 2006	6	70	5	64	8.9	1.10 (0.35-3.42)	
Roberts et al (US),35 1999	9	228	11	233	15.6	0.84 (0.35-1.98)	
Van Neste et al (M),37 2000	2	106	1	106	2.0	2.00 (0.18-21.72)	
Whiting et al (US),38 2003	25	286	7	138	17.5	1.72 (0.76-3.89)	+-
Total (95% CI)		1851		1719	100.0	1.39 (0.99-1.95)	•
Total events	88		55			,	*

Erektile Dysfunktion:

Study or Subgroup	Finasteride, Events	1 or 5 mg Total	Events	ebo Total	Weight, %	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H. Random, 95% CI
FMPHLSG. ²⁷ 2002 and Kaufman et al. ²⁸ 1998	11	779	5	774	51.5	2.19 (0.76-6.26)	
Leyden et al,31 1999	1	166	0	160	5.7	2.89 (0.12-70.48)	
Olsen et al. ³² 2006	1	70	3	64	11.6	0.30 (0.03-2.86) —	
Roberts et al,35 1999	5	228	0	233	7.0	11.24 (0.63-202.11)	
Van Neste et al,37 2000	2	106	1	106	10.2	2.00 (0.18-21.72)	
Whiting et al,38 2003	11	286	1	138	14.0	5.31 (0.69-40.70)	 •
Total (95% CI)		1635		1475	100.0	2.22 (1.03-4.78)	•
Total events	31		10			, ,	
Heterogeneity: $\tau^2 = 0.01$; $\chi^2 = 5.03$, $df = 5$ ($P = .4$	1); /2=1%					0.005	0.1 1 10 20

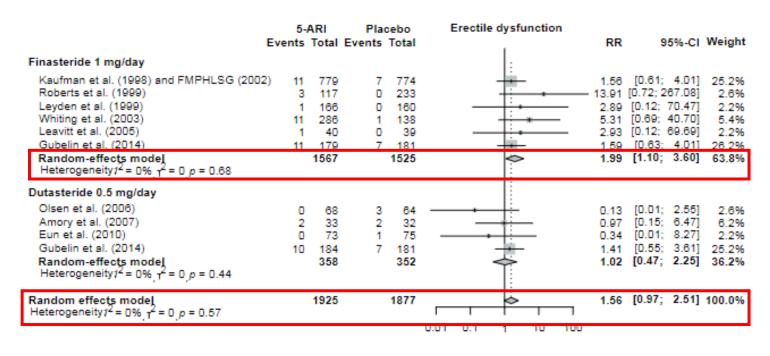
Mella J et al., Arch Dermatol, 2010

UAW Finasterid

Acta Derm Venereol 2019; 99: 12-17

Adverse Sexual Effects of Treatment with Finasteride or Dutasteride for Male Androgenetic Alopecia: A Systematic Review and Meta-analysis

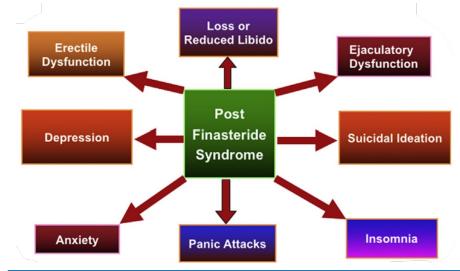
Solam LEE, Young Bin LEE, Sung Jay CHOE and Won-Soo LEE


Department of Dermatology and Institute of Hair and Cosmetic Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea

Systematischer Review & Metaanalyse von Placebo-kontrollierten, randomisierten Studien

- n= 4495 in 15 Studien
- Anstieg sexueller Funktionsstörungen um 1,57-fache unter Therapie mit 5α-Reduktasehemmer bei androgenetischer Alopezie

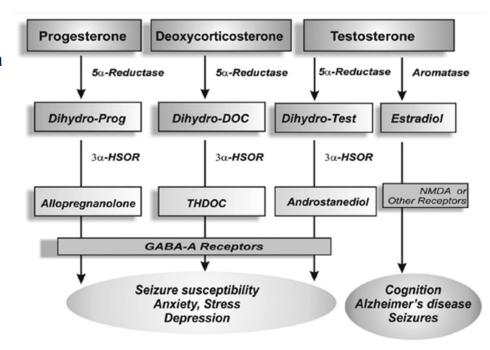
Bei Therapie mit 1 mg Finasterid erhöhtes Risiko:


- > 1,99 x erektile Funktionsstörung
- ➤ 1.4 x reduzierte Libido
- > 1,59 x Ejakulationsstörung

Lee S et al., Acta Derm Venereol, 2019

- Definition: Persistenz von sexueller Dysfunktionen sowie kognitiver und psychischer Störungen nach Absetzen von Finasterid
- Zu den <u>persistierenden Nebenwirkungen</u> zählen sexuelle Funktionsstörungen, Depression, Angst und kognitive Störungen mit Reduktion der Lebensqualität
- Postulierte Inzidenz: 68 % unmittelbar nach Absetzen von Finasterid und 62 % >12 Mo.
- Bei 55% der Pat. Mit PFS waren vorab psychiatrische Erkrankungen bekannt
- Noceboeffekt: NW 3x höher bei Pat. die über mögl. UAW informiert waren

Tab. 5 Depressive Symptomatik bei Patienten mit PFS (≥3 Monate nach Absetzen der Behandlung einer AGA mit 1 mg Finasterid) im Vergleich zu Männern mit AGA, die keine Finasteridbehandlung erhielten. (Nach [42])

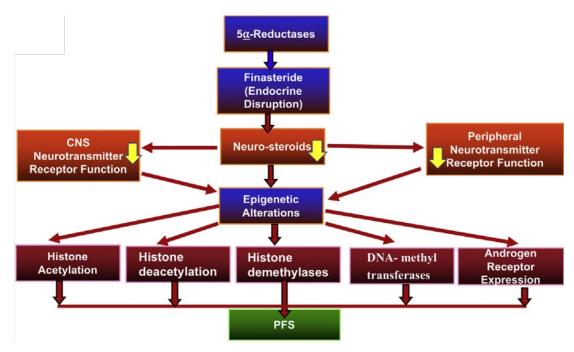

	Finasteridgruppe	Kontrollgruppe	Signifikanz
Männer (n)	61	29	-
Alter (Jahre)	$31,0 \pm 5,7$	$26,2 \pm 4,1$	<i>p</i> < 0,0001
Depressive Symptome	75 %	10 %	<i>p</i> < 0,0001
- Leichte depressive Symptome	11 %	10 %	-
- Moderate depressive Symptome	28 %	0 %	-
 Schwere depressive Symptome 	36 %	0 %	-
Suizidgedanken	44 %	3 %	<i>p</i> < 0,0001
Beck Depression Inventory II (Skala)	23,67 ± 12,56	5,93 ± 4,48	<i>p</i> < 0,0001

Abdulmaged M, Fertility and Sterility Vol. 113, 2020 Kuhl H, Wiegratz I, Gynäkologische Endokrinologie 2017, 15:153–163

Hypothesen:

- Psychische und mentale Folgen gehen von 5α-Reduktase-Blockade im ZNS aus
- Zentraler Abfall von DHT und anderen 3α,5α- reduzierten neuroaktiven Steroiden, z. B. Allopregnanolon
- Bei psychiatrischen Symptomen: Im Liquor Nachweis erhöhter exzitatorisch wirksamer Neurosteroide (Pregnenolon und GABA_A-Antagonist Isopregnanolon) und Reduktion neuroaktiven Progesteronmetabolite (5-alpha Dihydroprogesteron und Allopregnanolon)
- Verminderte Produktion der neuroaktiven 3α,5α-reduzierten Steroide durch zentraler Finasteridwirkung (Hemmung Bildung von DHT und 5α-reduzierten Progesteron- und Kortikosteroidmetaboliten)
- Wirkung von Allopregnanolon (3α,5α-Pregnanolon) und 3α,5α-Tetrahydrodesoxykortikosteron: sedativ, hypnotisch, anästhetisch, antikonvulsiv, anxiolytisch, antidepressiv. Beeinflussung von Gedächtnis, Schlaf und Stressreaktionen
- Mangel an Allopregnanolon und anderen 3α,5α-reduzierten Steroiden verursachen bzw. verstärken Depression, Aggravierung unter Stress
- Die Ätiologie ist unklar

Abdulmaged M, Fertility and Sterility Vol. 113, 2020 Kuhl H, Wiegratz I, Gynäkologische Endokrinologie 2017, 15:153–163


Hypothesen:

Permanente Hemmung der 5α-Reduktase mit Bildung von Antikörpern gegen das Finasterid-

NADP+-5α-Reduktase-Addukt

Epigenetische Veränderungen:

- Epigenetische Prozesse führen zur Abschaltung des 5α-Reduktase-codierenden Gens
- Beeinflussung der DNA-Methylierung des Androgenrezeptorgens und damit der Androgenrezeptoraktivität
- Modulierung der DNA-Methyltransferasen in verschiedenen Gehirnregionen durch Veränderungen von DHT und Östradiol

Kuhl H, Wiegratz I, Gynäkologische Endokrinologie 2017, 15:153–163, Abdulmaged M, Fertility and Sterility Vol. 113, 2020

Therapieansätze:

- Testosteronsubstitution? Bei gesichertem Hypogonadismus
- Dihydrotestosteronsubstitution?
- Therapie mit Antidepressiva? Selektive Serotonin-Wiederaufnahme-Hemmer? Trizyklika?
 Selektive Noradrenalin-Wiederaufnahmehemmer? Bupropion?

→ Multifaktorielle Therapie mit medikamentösen und psychotherapeutischen Ansätzen sowie Verhaltenstherapie, Ernährungstherapie und Sporttherapie

Kuhl H, Wiegratz I, Gynäkologische Endokrinologie 2017, 15:153–163

Fazit

- Symptome nach Finasteridtherapie sind möglich: vermehrte Tagesmüdigkeit, Polysomnie, Gewichtszunahme, Konzentrationsstörungen, depressive Verstimmungen, Libidoverlust, erektile Funktionsstörungen
- Häufig ohne laborchemisches Korrelat
- Prädestiniert sind Männer im mittleren- bis höheren Lebensalter mit vorbestehender psychiatrischer Erkrankung, z.B. Depressionen und Persönlichkeitsstörungen sowie positiver Familienanamnese
- Patientenselektion für Finasteridtherapie? (vermindertes Selbstwertgefühl?/ Persönlichkeitsakzentuierung?)
- Keine systematische Therapie verfügbar, multifaktorieller Therapieansatz

Vielen Dank für Ihre Aufmerksamkeit